Time: 20 mins, Marks: 20

SECTION 'A'

Q.1 Choose the correct option.

The function $y = 5 + x^4$ is a/an.....

(A) Constant function function

(B) Even function

(C) Odd function

(D) Both even and odd

 $\lim_{x \to a} \frac{x^3 - a^3}{x - a} = \dots$ (A) 3a (B) $2a^2$ ii.

(C) 0

 $(D)3a^2$

If $f(x) = x^{100}$ then $f'(1) = \dots$ (B) 99 iii.

(C) 50

(D) 0

 $\frac{d}{dx}\left(\frac{1}{g(x)}\right) = \dots$

 $(A)\frac{g'(x)}{g(x)}$

 $(B)\frac{-g'(x)}{(x+x)^2}$

 $(C)\frac{-g'(x)}{g(x)}$

(D) $\frac{g'(x)}{(g(x))^2}$

If $y = e^{2x}$ then y'' is equal to:

 $(A)e^{2x}$

(B) $4e^{2x}$

(C) $2e^{2x}$

(D) xe^{2x}

 $\int dx = \dots$ vi.

(A) 1

(B) -1

(C) 0

(D) x + c

 $\int (e^x + 1)dx = \dots$ vii.

(A) $e^{x} + c$ (B) $e^{x} + x + c$ (C) $e^{x} + x^{2} + c$

(D) $e^{2x} + 1 + c$

 $\int \frac{f'(x)}{f(x)} dx = \dots$ viii.

(A) $\ln |x| + c$

(B) $\ln |f(x)| + c$ (C) $\ln |f'(x)| + c$

 $(D)x^2$

 $\int x^{-1} dx = \dots$ ix.

(A) 0 + c

(B) $-x^2 + c$ (C) $\frac{x^{-2}}{2} + c$

(D) $\ln |x| + c$

Solution of the differential equation $\frac{dy}{dx} = sec^2x$ is: (A)y = cosx + c (B)y = secx + c (C) $y = cosec^2x + c$ X.

(D) y = tanx + c

The order of the differential equation $x \frac{d^2y}{d^2x} + (\frac{dy}{dx})^3 - 2 = 0$ is: xi.

(A) 3

(B)2

(D) 0

Location of point p(x, y) for which x = y is in the quadrant: xii.

(A) 1st & 3rd

(B) 1st & 4th

(C) $2^{nd} & 4^{th}$

(D) $1^{st} \& 2^{nd}$

Equation of a line passing through (-2,3) having a slope of 0 is : xiii.

(A) y=2

 $(B)_{v=-3}$

(C) y=3

(D) y = -2

A circle is called a point circle if: xiv.

(A) r=1

(B) r=-1

(C) r=0

(D) r=2

xv. The radius of the circle $(x-3)^2 + (y-2)^2 = 8$ is: (A) 8 (B) 64 (C) $2\sqrt{2}$ (D) 2

xvi. Vertices of the ellipse $x^2 + 4y^2 = 16$ is : (A) $(\pm 4,0)$ (B) $(0,\pm 4)$ (C) $(\pm 2,0)$ (D) $(0,\pm 2)$

xvii. Newton-Raphson method is_----_iterative method.

(A) one point (B) Two points (C) Four points (D) There points

xx. If $\vec{r} = cost\hat{\imath} + sint\hat{\jmath} + \hat{k}$ then the velocity vector \vec{v} is:

(A) $sint\hat{\imath} + cost\hat{\jmath} + \hat{k}$ (B) $-cost\hat{\imath} + cost\hat{\jmath}$ (C) $-sint\hat{\imath} + cost\hat{\jmath}$ (D) $sint\hat{\imath} + cost\hat{\jmath}$

SECTION 'B'

Marks 50

Q.2 Attempt Any TEN of the following short questions. Each question carries 5 marks.

i. Evaluate:
$$\lim_{x\to 7} \frac{\sqrt{x}-\sqrt{7}}{x-7}$$
. (1+1+2+1=5)

ii. Differentiate:
$$y = (3x^2 - 2) \cdot sinx$$
 (1+2+2=5)

iii. Use Maclaurin's series for f(x) = sinx(2+2+1=5)

iv. Evaluate
$$: f(x) = \lim_{t \to 0} [tan2t\hat{\imath} + \ln(3+t)\hat{\jmath} + \hat{k}].$$
 (2+2+1=5)

v. Evaluate: $\int_{1}^{2} \frac{x}{x^2+2} dx$ (1+2+2=5)

vi. Evaluate: $\int e^{2x} \cos 3x dx$. (2+2+1=5)

vii. Write down an equation of the line which cuts the x-axis at (2,0) and y-axis at (0,-4). (2+2+1=5)

viii. Find the area of the triangular region ABC whose vertices are A(1,4), B(2,-3) and C(3,10). (2+2+1=5)

ix. Find the center and radius of the circle
$$x^2 + y^2 + 12x - 10y = 0$$
 (1+2+2=5)

x. Find an equation of the parabola whose focus is F(-3, 4) and directrix is 3x - 4y + 5 = 0. (1+2+2=5)

xi. Find an equation of the ellipse and its directories whose foci are $(\pm 2, 0)$ and eccentricity is $\frac{1}{2}$. (1+1+1+1+1=5)

xii. Find general solution of
$$\frac{dy}{dx} + \cos 2x + 1 = 0$$
 (2+2+1=5)

xiii. Solve up to four iteration of Newton-Raphson iterative method for f(x) = sinx, $x_0 = -2$ (1+1+1+1=5)

SECTION 'C' Marks 30

Note: Attempt Any Three questions. Each question carries 10 marks.

Q.3

i. If
$$f(x) = \sqrt{x+4}$$
, then find $f(x^2+4)$. (1+2+2=5)

ii. Use definition to find the derivative of
$$f(x) = x^2 + 2$$
. (1+2+2=5)

<u>Q.4</u>

i. Find the area bounded by curve
$$y = 4 - x^2$$
 and the x-axis. (1+2+2=5)

ii. Find an equation of the straight line if it is perpendicular to a line with slope -6 and its y-intercept is $\frac{4}{3}$. (2+2+1=5)

<u>Q.5</u>

- i. Find the equation of tangent and normal at the point $\left(-\sqrt{13}, \frac{9}{2}\right)$ to the hyperbola $\frac{x^2}{4} \frac{y^2}{9} = 1.(2+2+1=5)$
- ii. Find the equation of the circle whose center is (0,0) and which contains the point (1,2). (1+2+2=5)

<u>Q.6</u>

i. Find the partial derivatives
$$f_x$$
 and f_y of $f(x,y) = x^2y^3tan^{-1}y$. (2+2+1=5)

ii. Use the trapezoidal rule to approximate the value of
$$I = \int_1^3 x^2 dx$$
, $n = 6$. (1+2+2=5)